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Abstract. We consider minimum concave cost flow problems in acyclic, uncapacitated networks
with a single source. For these problems a dynamic programming scheme is developed. It is shown
that the concave cost functions on the arcs can be approximated by linear functions. Thus the con-
sidered problem can be solved by a series of linear programs. This approximation method, whose
convergence is shown, works particularly well, if the nodes of the network have small degrees.
Computational results on several classes of networks are reported.
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1. Introduction

We consider a directed, acyclic graph= (V, E) with vertex setV = {vg, vq, ...,
v,} and arc seE. For each vertex we denote 8 (v) andE, (v), respectively, the
set of arcs which start and end, resp.y i\ vertex with empty seE, (v) is called a
source SincegG is acyclic we can assume that every arc has the fafm;) with
i < j.We furthermore assume thad is the single source . For any vertex
v; (1 < i < n) let the nonnegative real numbe¢v;) be thedemandof vertexwv;.
The total demand of the network is given By= Y ""_, g (v;).

A flow x in the network is a functioox : E — R, which fulfills the flow
conservation conditions

Do oxe)— Y x(e) = q) fori=12....n 1)

ecE: (v;) ec€Es(v;)

* This research has been supported by Spezialforschungsbereich FO03 ‘Optimierung und Kon-
trolle’, Projektbereich Diskrete Optimierung.
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Now we define on each aw € E a concave, nonnegative cost functign For
example,f, might be a fixed charge function of the form

o if x(e) =0
fe(x(e)) = ax(e) +p if x(e) > 0. @

wherea and g might depend on the arc Note that we do not have to consider
parallel arcs, since the sum of concave functions is concave again. This means that
any arce is uniquely defined by its head and tail.

In this paper we design a solution method for the minimum concave cost net-
work flow problem(P) in uncapacitated, acyclic networks with a single source.

(P) Find aflowx(e), e € E, which minimizes the total cost

Y fel®

eckE

The existence of an optimal solution @) follows from the nonnegativity of the
cost functionf, (x).

The minimum concave cost network flow problem arises in many application
areas, see e.g. [5] and the references therein. In the case of fixed charge costs the
problem can be reformulated as a mixed integer linear program and can be solved
by branch and bound methods. Gallo, Sandi and Sodini [4] present an efficient
branch and bound method which can be applied to problems with general con-
cave functions and which takes also capacity constraints into account. Guisewite
and Pardalos [6] discuss algorithms, applications and complexity issues for the
uncapacitated single-source minimum concave cost network flow problem.

The best exact methods known for general minimum concave cost network flow
problems work only for small to medium sized problem instances. To solve large
scale problems, several authors have proposed heuristics. Recent work in this dir-
ection includes the GRASP heuristic of Holmqvist, Migdalas and Pardalos [7] for
the single source uncapacitated minimum concave cost network flow problem and
the dynamic slope scaling procedure for the minimum concave cost network flow
problem with cost functions which are either of fixed-charge type or are concave
and piecewise linear by Kim and Pardalos [8, 9].

Another approach is to consider special cases of the minimum cost network
flow problem which arise if additional structure is imposed on the input data. Klinz
and Tuy [10] and Tuy et al. [12] consider problems where nonlinear concave cost
functions are imposed on a restricted number of arcs. They design strongly poly-
nomial algorithms for this special case. For a survey on the minimum concave
cost network flow problem with a fixed number of nonlinear arc costs see the
recent paper by Tuy [11]. Guisewite and Pardalos [5] discuss a large number of
applications, complexity results and solution methods for the minimum concave
cost network flow problem.
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In this paper we present a dynamic programming approach for the minimum
concave cost network flow problem in uncapacitated, acyclic networks with a single
source which is based on linear approximations for the cost functions. This ap-
proach seems to be well suited for layered type networks and graphs with small
vertex degrees.

The paper is organized as follows: in Section 2 we outline a general dynamic
programming scheme for solvin@g?). In Section 3 we introduce linear approx-
imations. In Section 4 the convergence of the approximation method is shown.
In Section 5 we report on computational results on problem instances of various
structures and close finally the paper with concluding remarks.

2. A general dynamic programming scheme

Fore =0,1,...,n let G, be the subgraph af induced by the vertex séf, =

{vo, v1, ..., ve}. LetU, := V\V, and defineC, C V, as the set of all vertices
from which there leads an arc to a vertexip. We can assumg’,| > 2 (1 <

I < n — 1), since otherwise we could decompose the given problem into two
independent subproblems.

For numerical reasons we assume tftaf is not too large, since the amount
of work proposed by the following dynamic programming scheme depends on this
size.

In the following we present a general dynamic programming method for prob-
lem (P). We considem stages corresponding tg, v, ... , v,, respectively. The
vector of state variables in stageés a vectorx, defined onE; (v,):

xe = (x(e)), e € Ei(vy).

Forevery¢ =0,1,... ,n — 1 we define

g = (-xe-i-l’ Xo425 « o v s xn)'
According to this notationz,_1=x,, z,_1=(x¢,z¢), £ = 1,2,...,n — 1 and
zo=(x1, X2, ..., x,). Given a nonnegative vectay, 1 < ¢ < n — 1, we define
a vectorg,, on the set of verticefvs, vy, ... , v¢} as follows

q(v) ifvegCy
g, (V) = q(v) + Z ze(v,u) ifvedC,. 3)
(v,u)eE

For¢ =1,2,...,n — 1 we denote by:,(z,) the minimum cost value on the set of

feasible flows inG, with respect to the demand vecigy. In addition, we define
ho(zo) = 0.
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SinceG, can be obtained by adding vertexand the set of arcg; (v,) to G,_1,
we have the following recursive equations

he(ze) = min g he1(xe 20) + D felxe)| Y xi(e) =gz (v, x =07,

ecEt (ve) ecE; (vg)

¢=1,2,... ,n—1.0Onthe basis of these recursive equations we can, in principle,
find an optimal solution to problerP) by the following backward scheme:
Subproblem in Stage:

min h,_1(x) + Y felxa(e)),

ecEt(vy)

st ) x(© =q@), x>0,

e€Er(vn)

Denote byy, andXx, the optimal value and optimal solution to this problem,
respectively, and defirg_, = x,,.
Subproblem in Stage — 1:

min hn—Z(-xn—la zn—l) + Z fe(-xn—l(e))v

e€kEr(vy-1)

St ) %1(0) = g5, (V1) X1 20,

e€Er(vy-1)

Denote byy,_, andx,_; the optimal value and optimal solution to this problem,
respectively, and defirg_; = (x,,_1, X)-
Analogously we obtain for the subproblem in Stdge

min hy_1(x¢, 2¢) + Z Sfe(xe(e)),

ecE;(vy)

st ) xe(e) =gz (ve), x> 0.

ec€E;(ve)

Denote byy, and X, the optimal value and optimal solution to this problem,
respectively, and defire_, = (x¢, Z¢).

Subproblem in Stage 1.

min )" fo(x(e)),

e€E(v1)

st ) x(e) =gz (v), 11 > 0.

e€E(v1)



LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 125

(Since E;(v1) contains only a single artvg, v1), this problem has the feasible
solutionx; = ¢z, (v1).) As usual we denote by, andx; the optimal value and
optimal solution of the above problem, and deftge= (x1, 71).

Now we get:

THEOREM 2.1. By solving the subproblems irstages we obtain an optimal flow
Zo = (*1, X2, ..., x,) and its optimal valug’,,.

Proof. Since by adding vertex, and the set of arcg;(v,) to G,_; we obtain
the given graplG, the valuey, given in the subproblem in stageis the optimal
value to our problem. Since, solves the subproblem in stageit follows from
the recursive equations that

Vo= D [ol®u(€)+ hy1(Zu-1)

e€Ey(vn)
= Y L@@+ Y feEa1(0) + hu2Gu2)
e€E(vy) e€kE(vy—1)

= Y LG+ Y. fEa@)t-+ Y foFi(e).

ecEt(vp) ecE(vp—1) eck; (vy)

This proves the optimality of flowy = (x1, X2, ... , X,). a

Since in each subproblem the objective function is concave (see Lemma 4.3)
and the feasible set is a simplex, the subproblems can be solved by evaluating the
objective function in the vertices of the simplex. Note, however, that the functions
he(x,) are only implicitly given and their actual computation depends on the num-
ber of states which have to be taken into consideration. This might be very costly.
Therefore we design in the next section a faster approximation method and show
the convergence of the approximate solutions to the optimal solutioR )of

3. Alinear approximation method

A major complication in the general method presented in Section 2 is that the
functions i, (x,) are implicitly defined and hard to compute. Therefore we shall
use successive linear underestimations for these fundtioinsan iterative scheme
which will be shown in Section 4 to converge towards the optimal solutiaiPof

In each iteration of the approximation method we perform the following tasks

e Given linear approximations of the functiong, we solve approximate sub-
problems in a backward scheme. The subproblem in stagevides a lower
bound for the optimal value afP)

e Using the solutions of the subproblems, we update the linear approximations
for the functionsh,, ¢ =1,2,...,n — 1.
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e Using local search, based on the information about the solution of the sub-
problems we improve, if possible, the upper bound on the optimal value of
(P).

(3) will be replaced by

q(v) if v ¢ Co
f]sg (v) = .
g) +se(v) ifveC,
wheres, is a vector defined oy, £ =1, 2, ..., n—1. The minimum cost value on

the set of feasible flows d¥, with respect to the demand vectorwill be denoted
by H,(s,). For notational convenience we defifig(sg) = 0 for so > 0. Moreover,
we defineHs = Hy=0forany k=1,2, ...

After these preparations we can now formulate our approximation algorithm.

Linear Approximation Method.

Let p be a given tolerance.

Initialization. Letz® be an initial feasible flow with cos® = Y eck £.@%e)).
8%is an upper bound on the optimal value. Defliie=0for¢ =1,2,...,n—

1,

k= 1.

Iteration k

— Step 1.Solve the following approximate subproblems in the backward scheme.

e Approximate Subproblem in Stagen: Lets,_1(v) = x,(v, v,), for all
v € C,_1, and solve

min HY j(si-)+ > folxu(e)),

e€E;(vn)

sit. Z xp(e) = q(v,), x, = 0.

e€E;(vp)

Let y* and (x*, s* ;) be the optimal value and optimal solution of that
problem, respectively.

In general, we consider in stagehe following subproblem:
e Approximate Subproblem in Stage¢: According tozf = (x;_ 4, ..., x%)
andsf already obtained, defing_; as follows

sec1() := Y zf,u) + xp(v,v), v € Cpoy,
(v,u)eE
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and solve
min H j(se-0)+ Y felxe(e)),
e€E;(vy)
st ) xu(e) =g (v, xe >0,
e€E;(vy)

Let y} and (xf, sf_,) be the optimal value and optimal solution, respect-
ively.
Finally we get

e Approximate Subproblem in Stage 1:According tozt = (x,...,x5)
ands! already obtained, defing as follows

k
sovo) = Y Z5(vo, u) + x1(vo, v2),
(v,u)eE

and solve

min Hi(so) + Y fe(xa(e)),

ecEr(v1)

st Z x1(e) = qsk (vy), x1 = 0.

ecE;(v1)

Let y{ andxf be the optimal value and optimal solution, respectively, and
definez’{) = (xf,xé, ... ,x,’j).

— Step 2.Improve the linear approximations: For every=1,2,... ,n — 1,
define the function}™* on the domain of, such that the set(y, s¢)| ¥ <
H(s,), s¢ > 0} is the convex hull of the vectotyf, s¥) and the set
{(y.sol y < Hf(s¢), s >0}

— Step 3.(optional). Using the best flo#* ! of the previous iteration and the
flow z§ = (x¥, x&, ... , x¥), update flowg* at this iteration by local search.

— Step 4.Defines* =", f.(Z*(e)) as an upper bound for the optimal value
at this iteration. If

8 =y < p
thenz* is p-optimal, otherwise go to iteratioh+ 1.

The functionsHLi‘, t=12....,n—1 k=1,2,... are polyhedral concave on
their domains by construction. Minimizing this type of concave functions subject
to linear constraints is in general a hard problem, see Falk and Hoffman [2]. In our
case, however, we have only one constraint and the feasible region is a simplex.
Since a concave function attains its minimum in a vertex of the feasible region, we
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have to evaluate the functiorig only in the vertices of the simplex. This can be
achieved by solving a linear program as follows.

Lets be a vector and letl be a function defined on the domdit} s > 0}. The
hypograph off is given by

hypoH := {(y.s)|y < H(s), s > O}

Let con{hypo H) denote the convex hull of the set hyph
In our case we have

hypo H! = {(v,s)ly < 0,5, >0} 1< e<n—1)
and
hypo H™ = convhypo HY, (v[, b))
= convhypo H}', (v, s0), (VEs sD) - (V) 50)),

for k = 1,2,.... In order to evaluaté?, " (s) we can solve the following linear
program

k
max > y/r;
=1

k
s.t. siri <s
(O{) Z [V
j=1
k

ergl

j=1
ri=z0forallj =1,2,... k.

If C, hasm, vertices, the corresponding linear progréam hasm, + 1 constraints
andk variables in thek + 1)st iteration. The constraints of this linear program
define a simplex. At stagethis simplex hasi, = |E;(v,)| vertices. This means,
the linear progranie) has to be solved, times with the same coefficient matrix
but different right hand sides. The right hand sides of two different problems at
Stage differ in only two entries. Therefore one can take advantage of this property
by using the dual simplex method.

Another useful observation is that the linear programs at staigeiteration
k + 1 differ from those at iteratiok only by an additional column. This can also
be taken into consideration for speeding up the solution process.

Moreover, we note that the variableof a linear program at stagewill never
enter an optimal basis at an iteratibn> k, if

)/Zi < max Zyljrj Zsejrjgsé, ergl, 1<j<k, j#£iy. (4
J#i J#i J#
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So we can discard redundant variables, whenever this condition is fulfilled. This
results in a reduced size of the linear programs.

4. Convergence of the linear approximation method

In this section we provide a convergence proof for the method described in Section
3. In particular we prove the following theorem.

THEOREM 4.1. (i) At any iterationk of the linear approximation metho# and

yX are an upper bound and a lower bound for the optimal value, respectively.
(i) For any p > 0, the linear approximation method terminates after a finite

number of iterations yielding a-optimal solutiorz*.

We prove this theorem by the help of the following lemmas.

LEMMA 4.2. The minimum cost valué/ (¢) on the set of feasible flows G
with respect to the demand vectgr is a concave function af on the domain
{ql g = 0}.

Proof. For any nonnegative demand vecigrthe minimum cost valuéf (¢) is
attained by a flow on a spanning treeGh Let ¢, ¢’ be two nonnegative vectors,
and letg” be a convex combination gfandqg’ : ¢’ = ug + 'q’ with u + ' =
1, u, ' > 0.Obviously,q” > 0.

Let A be the spanning tree, for which the minimum valdé¢g”) is attained.
Every demand vector defines a feasible flow on a spanning tree in a unique way.
Let x, x’, andx” be the feasible flows o which correspond tg, ¢’ andg”,
respectively. Sincg” = ug + n'q’ we getx” = pux + p'x’.

From) " f.(x"(e)) = H(g")and) _ fe(x(e)) = H(q), Y _ fo(x'(e)) > H(q')

ecE ecE eckE
we get

H(q") = Y fd"() =) fo(nx(e) + 1'x(e))
ecE ecE
> Z (nfe(x(e) + 1 fo(x(e))) (since f, are concave)
ecE

= puY folr)+ 1 ) felx'(€) = nH(q) + 1 H(g).

ecE ecE

Thus, H (¢) is concave ofq | ¢ > 0}. a

LEMMA4.3. Forany? =1,2,...,n — 1the functionsi, and H, are concave
on their domains.

Proof. The mappings, ~ ¢., ands, ~ g, are linear transformations from the
domains{z|z, > 0} and{s,|s, > 0} to the domainq |¢g(v;) >0, i =1,2,--- ,1}.
By applying Lemma 4.2 to the network, we obtain immediately the result. O
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LEMMA4.4. Foranyk=1,2,... andany¢ =0,1,...,n—1, H[" < H, onthe
domain{s,|s, > 0O}.

Proof. We prove this lemma by induction inand in¢. First of all, sinceH, is
nonnegative andi} equals O or{s,| s, > O}, it is obvious thatd} < H,, for all
¢=0,1,...,n— 1. Suppose that

Hf < H, ()
forall¢ =0,1,...,n — 1. For the induction it we are going to show that
H/™ < H, 6)

forall¢=0,1,...,n— 1. For¢ = 0, inequality (6) is obvious, sincly = H} =
... = Hf =0. So, we can suppose that

H{™ < H @
for somel € {0, 1, ... ,n — 1}. For the induction irf we are going to show that
Hi P < Hppa (8)

By construction,
hypoH["jfll = ConV(hYPOHLﬁla (Vzk+1v S§+1))-
It follows from the induction hypothesis (5) that
Hf.. < Hppa

This together with the concavity di,,; (Lemma 4.3) implies (8) if we can show
that

Vek+1 < H€+1(s§+1)- (©)

By definition, Vzk+1 is the minimum value in the approximate subproblem at stage
£ + 1in iterationk:

vEa = mind HiGs)+ Y felxea(e))
ecEr(ve+1)

(10)
Y xea(@ =gy (W), xe1 >0

e€E;(vgy1)

But Hy1 (s;..,) is by definition the minimum cost value on the set of feasible flows
in G,.1 with respect to the demand VecHgr .



LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 131

It fulfills the recursion

Hya(sf) = min{ His)+ Y felxesa(e))

ecEr(vey1)

Z Xepa(e) = gk (ey), xep1 20,
e€E;(vgy1)

(11)

wheres, is defined as in the approximate subproblem in stagel, iterationk.

Now inequality (9) can be obtained from (10), (11) and the induction hypothesis
(5). So we obtain (8). Then, inequality (6) follows by inductionfgand the lemma
follows by induction ork. a

Now we can prove the convergence theorgthdenotes the optimal value of
the approximate subproblem at stagehat is

yi=mint H () + Y fla(@)| D xale) =qv,), x, >0

e€Ey(vn) e€Ey(vn)

Thus we get fromH* , < H,_; (Lemma 4.4) that

vl <mint HyaGse) + ) fer(@)| D xale) = q(u), x, >0

ecE;(vy) ecE;(vy)

By definition of H,_;, however, the minimum on the right hand side of the above
inequality is the optimal value of the approximate problem inkttle iteration. So,

yX is a valid lower bound for the optimal value. If the linear approximation method
terminates at iteratiok, then the current best flo@ satisfies

vitp = ) LG ) = 5

ecE

Sincey* is a valid lower bound, the above inequality implies tHais a p-optimal

flow.

It remains to prove that the linear approximation method is finite. Suppose the
contrary, namely that we get an infinite sequeiicg. Since the solution* to

the approximate subproblem in stagecorresponds to a vertex of the simplex
defined by the constraints, the feasible flgjy= (x5, x5, ... , x*) corresponds to

a spanning tree. Since the number of spanning trees is finite, there exist a feasible
flow z* = (x*, x5, ..., x*) and an infinite subsequen¢g’} such that

¢ = z° forallg.
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This implies
sy = s¢ forallgandalle=1,2,...,n—1
Obviously, for¢ = 0 one has
Ho(sy) = Hy'(sg) forallo > 1.
Now suppose that for sontec {0, 1, ... ,n — 1} one has
Hy(s}) = HY(sp) forallg >e+41
We are going to prove that
Hopa(si) = Hpoy(st) foralld > e+2.
Indeed,
Hia(siyy) = Hia(s'5)  (by (12)

= min{ Hs)+ Y felxeia(e))

ecEr(ve+1)

(12)

(13)

(14)

D x41(€) =g (ves1), X0 >0
o+

e€E;(vgy1)

wheres, is defined as in the approximation subproblem in stagel and iteration

key1. So, foré > £ + 2 one has

* k
Hya(sfy) < He(s"™M+ Y Lol

kea ecEt(vo41)
= Vg1
< HUEN s (since(y it syt € hypoH
< H, +1(sffll) (sinceky > kpy1 + 1)
= Hy%y(stp)  (by (12))
< Hpa(sfy).  (by Lemma 44)

Thus at iteratiork, we have

Hy(si") = HY"(sy") foralle=1,2,...,n—1

k£+1+l)
{+1

(15)
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Therefore,
v = Hy )+ Y fexf (@)
e€E(vy)
= Hyals) D+ Y flx(e)  (by(15)
e€E(vy)

> min{ H,_1(s,—1) + Z fe(xu(e))

e€Et(vn)

Y xu(e) =qa), x, 2 0¢,

e€Er(vn)

wheres,_1(v) = x,(v, v,), v € C,_1. The last minimum is nothing but the optimal
value of our problem. Sg;* is the optimal value. It can be seen from (15) that

=) folzg (e)),

ecE

i.e., ¥y must coincide with the upper bourdd. Thus the linear approximation
method terminates at iteratiory. This is a contradiction to the assumption that
sequencez’(‘f} is infinite. This completes the proof of the convergence theorem.

5. Computational results

As mentioned in the beginning, a dynamic programming approach for the min-
imum concave cost network flow problem seems only to be reasonable, if the
vertices in graphG have small degrees. Thus we tested the linear approximation
method mainly on several such graph classes, the largest instance being a graph
with 1103 vertices and 2202 arcs.

The only recent computational results for large scale uncapacitated minimum
concave cost network flow problems in the literature of which we are aware, are the
results given by Holmaqyvist, Migdalas and Pardalos [7] and Kim and Pardalos [8].
In [7] instances up to 500 vertices and 7500 arcs are solved by using a GRASP type
heuristics. The authors do not report on the quality of their suboptimal solutions.
In [8] large scale fixed charge network flow problems are treated up to 202 vertices
and and 10200 arcs. However, only problems up to 335 arcs are solved optimally.

In all tests below, the demangsv) are uniformly distributed random numbers
drawn from the interval0.1, 10000] For the cost functiory, on an are we always
assume the form:

if x(e) =0
a1+ oan-x(e) +az-x(e)* if x(e) >0,

fe(x(e)) =
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wherewy, a, az are uniformly distributed random numbers[® 100] anday is

a uniformly distributed random number [0, 1]. The approximation method is
implemented in ANSI C and the codes are compiled usingctheompiler. The
linear programs are solved by using the callable library from CPLEX 6.0.2. All
tests are run on a HP J200 PARISK 7200 workstation with 1.5 GB of RAM.

For every vertexy; we create a basic data set for thelinear programs cor-
responding to the arcs with the terminal vertgxIn an iteration we justify the
right-hand side in the data set to obtain a linear program to be solved.

In order to solve the linear programs we have always used the CPLEX primal
simplex algorithm. By performing experimental tests we have seen that applying
the CPLEX primal algorithm is better than applying the CPLEX dual algorithm to
the modified problems. This can be explained by the fact that CPLEX is performing
internally a lot of preprocessing and reduction steps which considerably reduce the
problem size and lead to fast reoptimization.

In all our computational experiments we yse= 10°° as a stopping criterion.
That is we virtually ask for the true optimal solution. Moreover, we do not use any
local search in Step 3 of the algorithm for improving the upper bound. Since the gap
between lower and upper bounds of the optimal flow value is quite large during the
starting iterations, and we virtually ask for the optimal solution, local search could
be time consuming to use. From computational experiments we see that usually the
upper bound reaches the optimal value before the lower bound. This happens just
very few iterations before we stop the algorithm. Hence, in this case a better upper
bound during the iterations obtained by local search is not helpful. But we think
local search may be helpful when an approximate solution is asked for. In this case
one may start using local search after a given number of iterations (i.e., when the
obtained solution is near enough to the optimal solution).

The number of linear programs solved in each iteration is equal to the number of
arcs in graphG. The total number of linear programs solved in our computational
experiments includes the linear programs solved in order to discard redundant
variables by using condition (4).

Since all test runs took a relatively large number of iterations (usually more
than 1000), we discard redundant variables by using condition (4) after every 500
iterations. Although we have to solve additional linear programs in order to test
condition (4), this pays off in terms of computational time and memory used. We
have seen from experimental tests that good results can be obtained by performing
the test of condition (4) every 500 iterations.

The first graph class we consider is specially layered graphs of the following
form. The graphs have layers and in every layer vertices. The source is con-
nected with all vertices in the first layer. For= 2 we connect always all vertices
of two adjacent layers, in the cases> 3 we generate the arcs randomly. Figure
1 shows the structure of such a layered graph and Table 1 reports computational
results for this graph class.

In the table below are given the computational results for the layered graphs.
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0
2 4 6 8
Figure 1. A layered graphi{ = 2, p = 4).
Table 1. Results for the layered graphs
No. of vertices  No. of No. of Average No. No.of Average No. Average
per layer vertices  destinations  of arcs of iterations  CPU (s)
2 23 22 42.0 5 75.0 2.58
2 53 52 102.0 5 181.4 21.70
2 103 102 202.0 5 357.2 117.31
2 203 202 402.0 5 728.4 807.60
2 303 302 602.0 2 1062.5 3276.73
2 403 402 802.0 2 1417.0 4581.85
2 503 502 1002.0 1 1795.0 9503.58
2 603 602 1202.0 1 2137.0 13460.33
2 803 802 1602.0 1 2849.0 27935.86
2 1003 1002 2002.0 1 3643.0 58424.93
2 1103 1102 2202.0 1 3923.0 67854.50
3 34 33 77.2 5 378.4 62.74
3 64 63 157.2 5 791.8 452.15
3 154 153 379.0 2 2016.0 3989.01
3 304 303 743.0 1 4063.0 20910.34
4 45 44 123.0 2 1919.0 1588.78
4 105 104 300.0 1 5511.0 15193.96

We perform a number of tests for a given structure of the graph for a given
number of vertices. The average number of arcs, average number of iterations and
the average CPU times (in seconds) are given in the table. Recall that for graphs
with 2 vertices per layer the number of arcs is the same for each test of a given
instance, while for graphs with more than two vertices per layer the number of
arcs may be different in each of the tests. The CPU time for each problem in the
table represents the computational time to solve the problem, without taking into
consideration the generation of data.

Second, we test the algorithm on acyclic graphs as shown in Figure 2. We
generate these graphs due to the condition that the head of an arc is at most 3
layers away from the layer which contains the tail of this arc and that the indegree
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2 4 6 8

———

Figure 2. An acyclic graph of the second test-class.

Table 2. Results for the acyclic graphs

No. of vertices  No. of No. of Average No. No.of Average No. Average
per layer vertices destinations of arcs tests of iterations  CPU (s)
2 23 22 50.4 5 143.0 9.20

2 33 32 76.4 5 351.2 55.70

2 53 52 124.4 5 447.6 123.00
2 103 102 248.2 5 1124.6 1224.79
2 203 202 492.5 2 23195 5677.41
2 303 302 748.0 1 3177.0 15553.04
3 16 15 36.2 5 3154 27.10

3 34 33 90.5 2 1649.0 1107.08
3 64 63 175.0 1 4250.0 7331.95

of the vertices is not too high. Table 2 shows computational results for this class of
graphs.

As a third graph class we consider transportation networks with one saurce,
transshipment vertices amdsinks. The source is connected with every transship-
ment vertex and these are connected with all sinks (cf. Figure 3). Thus these graphs
havem (r 4+ 1) arcs in total. Table 3 shows the computational results for this graph
class.

5
Figure 3. A transportation network with 2 transshipment vertices and 3 sinks.
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Table 3. Results for the transportation graphs
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No. of No. of transship.  No. of No.of No.of Average No. Average
vertices  vertices destinations  arcs of iterations  CPU (s)
53 2 52 102 5 441.6 81.63
103 2 102 202 5 1111.8 903.62
203 2 202 402 1 3281.0 7796.14
34 3 33 93 5 713.0 206.99
54 3 53 153 5 1717.0 1085.41
104 3 103 303 1 7182.0 19668.83
15 4 14 44 5 256.0 16.52
25 4 24 84 5 957.0 294.75
55 4 54 204 1 6460.0 13922.85
16 5 15 55 5 563.6 110.58
21 5 20 80 5 1205.0 431.60
26 5 25 105 2 2042.5 1167.84

If we compare the results for graphs with different structures but with approx-
imately the same number of vertices and arcs it can be seen that the algorithm per-
forms better for the layered network. For example, if the first 3 instances of trans-
portation graphs in the above table are compared with the corresponding layered
graphs with 2 vertices per layer (see Table 1), it can be seen that the number of
iterations and the CPU times are smaller in the case of a layered network. From the
tables it is clear that the results are better for graphs with small degree vertices and
small cardinality|C,|.

Finally, we consider complete, acyclic graphs with up to 21 vertices, (see Figure

4). The corresponding computational results can be found in Table 4.

Figure 4. A complete graph.

It can be observed that the above method is not practical for complete graphs.
For graphs with 19 or more vertices the number of iterations and computation time

is exorbitant.
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Table 4. Results for complete graphs

No. of No. of No.of No.of Average No. Average
Vertices Destinations  Arcs Tests of Iterations  CPU (s)

11 10 55 5 187.6 13.20
13 12 78 5 427.6 85.03
16 15 120 5 1132.6 725.35
19 18 171 1 5149.0 17491.17
20 19 190 1 6393.0 26220.21
21 20 210 1 7822.0 47994.34

6. Conclusions

The computational results show that dynamic programming might successfully be
applied to minimum concave cost network flow problems for layered networks
whose vertices have a small indegree. The proposed successive linear underes-
timation method for the involved concave cost functions has the nice feature that
several times linear programs with the same coefficient matrix have to be solved.
Two linear programs in two successive iterations differ only in one column of the
coefficient matrix and in the right hand side. Thus one can take advantage of these
properties by applying appropriate techniques from linear programming.

The advantage of this method is that the quality of the solution can be con-
trolled. We have virtually found the true optimal solution in all our computational
experiments.

Instead of linear underestimations of the involved functions it might be worth-
while to consider piecewise linear approximations for the convex cost functions
like in the paper of Kim and Pardalos [8]. Such an approach is left to a future
study.
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