
Journal of Global Optimization19: 121–139, 2001.
© 2001Kluwer Academic Publishers. Printed in the Netherlands.

121

Linear Approximations in a Dynamic Programming
Approach for the Uncapacitated Single-Source
Minimum Concave Cost Network Flow Problem in
Acyclic Networks?

RAINER E. BURKARD1, HELIDON DOLLANI 1 and PHAN THIEN THACH2

1Technische Universität Graz, Institut für Mathematik, Steyrergasse 30, A-8010 Graz, Austria
(e-mail: {burkard, dollani}@opt.math.tu-graz.ac.at.);2Institute of Mathematics, P.O. Box 631, Bo
Ho, Hanoi, Vietnam.

(Received 7 February 2000; accepted in revised form 21 September 2000)

Abstract. We consider minimum concave cost flow problems in acyclic, uncapacitated networks
with a single source. For these problems a dynamic programming scheme is developed. It is shown
that the concave cost functions on the arcs can be approximated by linear functions. Thus the con-
sidered problem can be solved by a series of linear programs. This approximation method, whose
convergence is shown, works particularly well, if the nodes of the network have small degrees.
Computational results on several classes of networks are reported.

Key words: Uncapacitated single-source acyclic networks, Concave costs, Dynamic programming,
Linear approximation, Convergence

1. Introduction

We consider a directed, acyclic graphG = (V ,E)with vertex setV = {v0, v1, . . . ,

vn} and arc setE. For each vertex we denote byEs(v) andEt(v), respectively, the
set of arcs which start and end, resp., inv. A vertex with empty setEt(v) is called a
source. SinceG is acyclic we can assume that every arc has the form(vi, vj) with
i < j . We furthermore assume thatv0 is the single source inG. For any vertex
vi (1 6 i 6 n) let the nonnegative real numberq(vi) be thedemandof vertexvi .
The total demand of the network is given byQ =∑n

i=1 q(vi).
A flow x in the network is a functionx : E → R+ which fulfills the flow

conservation conditions∑
e∈Et (vi)

x(e)−
∑

e∈Es(vi)
x(e) = q(vi) for i = 1,2, . . . , n (1)

? This research has been supported by Spezialforschungsbereich F003 ‘Optimierung und Kon-
trolle’, Projektbereich Diskrete Optimierung.

122 RAINER E. BURKARD ET AL.

Now we define on each arce ∈ E a concave, nonnegative cost functionfe. For
example,fe might be a fixed charge function of the form

fe(x(e)) =
{

0 if x(e) = 0

αx(e)+ β if x(e) > 0.
(2)

whereα andβ might depend on the arce. Note that we do not have to consider
parallel arcs, since the sum of concave functions is concave again. This means that
any arce is uniquely defined by its head and tail.

In this paper we design a solution method for the minimum concave cost net-
work flow problem(P) in uncapacitated, acyclic networks with a single source.

(P) Find a flowx(e), e ∈ E, which minimizes the total cost∑
e∈E

fe(x)

The existence of an optimal solution of(P) follows from the nonnegativity of the
cost functionfe(x).

The minimum concave cost network flow problem arises in many application
areas, see e.g. [5] and the references therein. In the case of fixed charge costs the
problem can be reformulated as a mixed integer linear program and can be solved
by branch and bound methods. Gallo, Sandi and Sodini [4] present an efficient
branch and bound method which can be applied to problems with general con-
cave functions and which takes also capacity constraints into account. Guisewite
and Pardalos [6] discuss algorithms, applications and complexity issues for the
uncapacitated single-source minimum concave cost network flow problem.

The best exact methods known for general minimum concave cost network flow
problems work only for small to medium sized problem instances. To solve large
scale problems, several authors have proposed heuristics. Recent work in this dir-
ection includes the GRASP heuristic of Holmqvist, Migdalas and Pardalos [7] for
the single source uncapacitated minimum concave cost network flow problem and
the dynamic slope scaling procedure for the minimum concave cost network flow
problem with cost functions which are either of fixed-charge type or are concave
and piecewise linear by Kim and Pardalos [8, 9].

Another approach is to consider special cases of the minimum cost network
flow problem which arise if additional structure is imposed on the input data. Klinz
and Tuy [10] and Tuy et al. [12] consider problems where nonlinear concave cost
functions are imposed on a restricted number of arcs. They design strongly poly-
nomial algorithms for this special case. For a survey on the minimum concave
cost network flow problem with a fixed number of nonlinear arc costs see the
recent paper by Tuy [11]. Guisewite and Pardalos [5] discuss a large number of
applications, complexity results and solution methods for the minimum concave
cost network flow problem.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 123

In this paper we present a dynamic programming approach for the minimum
concave cost network flow problem in uncapacitated, acyclic networks with a single
source which is based on linear approximations for the cost functions. This ap-
proach seems to be well suited for layered type networks and graphs with small
vertex degrees.

The paper is organized as follows: in Section 2 we outline a general dynamic
programming scheme for solving(P). In Section 3 we introduce linear approx-
imations. In Section 4 the convergence of the approximation method is shown.
In Section 5 we report on computational results on problem instances of various
structures and close finally the paper with concluding remarks.

2. A general dynamic programming scheme

For ` = 0,1, . . . , n let G` be the subgraph ofG induced by the vertex setV` =
{v0, v1, . . . , v`}. Let U` := V \V` and defineC` ⊆ V` as the set of all vertices
from which there leads an arc to a vertex inU`. We can assume|C`| > 2 (1 6
l 6 n − 1), since otherwise we could decompose the given problem into two
independent subproblems.

For numerical reasons we assume that|C`| is not too large, since the amount
of work proposed by the following dynamic programming scheme depends on this
size.

In the following we present a general dynamic programming method for prob-
lem (P). We considern stages corresponding tov1, v2, . . . , vn, respectively. The
vector of state variables in stage` is a vectorx` defined onEt(v`):

x` = (x(e)), e ∈ Et(v`).

For everỳ = 0,1, . . . , n− 1 we define

z` := (x`+1, x`+2, . . . , xn).

According to this notation,zn−1=xn, z`−1=(x`, z`), ` = 1,2, . . . , n − 1 and
z0=(x1, x2, . . . , xn). Given a nonnegative vectorz`, 1 6 ` 6 n − 1, we define
a vectorqz` on the set of vertices{v1, v2, . . . , v`} as follows

qz` (v) =
q(v) if v /∈ C`
q(v)+

∑
(v,u)∈E

z`(v, u) if v ∈ C`. (3)

For` = 1,2, . . . , n− 1 we denote byh`(z`) the minimum cost value on the set of
feasible flows inG` with respect to the demand vectorqz` . In addition, we define
h0(z0) ≡ 0.

124 RAINER E. BURKARD ET AL.

SinceG` can be obtained by adding vertexv` and the set of arcsEt(v`) toG`−1,
we have the following recursive equations

h`(z`) = min
x`

h`−1(x`, z`)+
∑

e∈Et (v`)
fe(x`(e))

∣∣∣∣∣∣
∑

e∈Et (v`)
x`(e) = qz`(v`), x` > 0

,
` = 1,2, . . . , n−1. On the basis of these recursive equations we can, in principle,
find an optimal solution to problem(P) by the following backward scheme:

Subproblem in Stagen:

min hn−1(xn)+
∑

e∈Et (vn)
fe(xn(e)),

s.t.
∑

e∈Et (vn)
xn(e) = q(vn), xn > 0.

Denote byγ n and xn the optimal value and optimal solution to this problem,
respectively, and definezn−1 = xn.

Subproblem in Stagen− 1:

min hn−2(xn−1, zn−1)+
∑

e∈Et (vn−1)

fe(xn−1(e)),

s.t.
∑

e∈Et (vn−1)

xn−1(e) = qzn−1(vn−1), xn−1 > 0.

Denote byγ n−1 andxn−1 the optimal value and optimal solution to this problem,
respectively, and definezn−1 = (xn−1, xn).

Analogously we obtain for the subproblem in Stage`:

min h`−1(x`, z`)+
∑

e∈Et (v`)
fe(x`(e)),

s.t.
∑

e∈Et (v`)
x`(e) = qz`(v`), x` > 0.

Denote byγ ` and x` the optimal value and optimal solution to this problem,
respectively, and definez`−1 = (x`, z`).
. . .

Subproblem in Stage 1:

min
∑

e∈Et (v1)

fe(x1(e)),

s.t.
∑

e∈Et (v1)

x1(e) = qz1(v1), x1 > 0.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 125

(SinceEt(v1) contains only a single arc(v0, v1), this problem has the feasible
solutionx1 = qz1(v1).) As usual we denote byγ 1 andx1 the optimal value and
optimal solution of the above problem, and definez0 = (x1, z1).
Now we get:

THEOREM 2.1. By solving the subproblems inn stages we obtain an optimal flow
z0 = (x1, x2, . . . , xn) and its optimal valueγ n.

Proof. Since by adding vertexvn and the set of arcsEt(vn) toGn−1 we obtain
the given graphG, the valueγ n given in the subproblem in stagen is the optimal
value to our problem. Sincex` solves the subproblem in stage`, it follows from
the recursive equations that

γ n =
∑

e∈Et (vn)
fe(xn(e))+ hn−1(zn−1)

=
∑

e∈Et (vn)
fe(xn(e))+

∑
e∈Et (vn−1)

fe(xn−1(e))+ hn−2(zn−2)

· · ·
=

∑
e∈Et (vn)

fe(xn(e))+
∑

e∈Et (vn−1)

fe(xn−1(e))+ · · · +
∑

e∈Et (v1)

fe(x1(e)).

This proves the optimality of flowz0 = (x1, x2, . . . , xn). 2
Since in each subproblem the objective function is concave (see Lemma 4.3)

and the feasible set is a simplex, the subproblems can be solved by evaluating the
objective function in the vertices of the simplex. Note, however, that the functions
h`(x`) are only implicitly given and their actual computation depends on the num-
ber of states which have to be taken into consideration. This might be very costly.
Therefore we design in the next section a faster approximation method and show
the convergence of the approximate solutions to the optimal solution of(P).

3. A linear approximation method

A major complication in the general method presented in Section 2 is that the
functionsh`(x`) are implicitly defined and hard to compute. Therefore we shall
use successive linear underestimations for these functionsh` in an iterative scheme
which will be shown in Section 4 to converge towards the optimal solution of(P).

In each iteration of the approximation method we perform the following tasks

• Given linear approximations of the functionsh`, we solve approximate sub-
problems in a backward scheme. The subproblem in stagen provides a lower
bound for the optimal value of(P)

• Using the solutions of the subproblems, we update the linear approximations
for the functionsh`, ` = 1,2, . . . , n− 1.

126 RAINER E. BURKARD ET AL.

• Using local search, based on the information about the solution of the sub-
problems we improve, if possible, the upper bound on the optimal value of
(P).

(3) will be replaced by

qs`(v) :=
{
q(v) if v /∈ C`
q(v)+ s`(v) if v ∈ C`

wheres` is a vector defined onC`, ` = 1,2, . . . , n−1. The minimum cost value on
the set of feasible flows ofG` with respect to the demand vectors` will be denoted
byH`(s`). For notational convenience we defineH0(s0) ≡ 0 for s0 > 0. Moreover,
we defineHk

0 = H0 ≡ 0 for any k= 1,2, . . .
After these preparations we can now formulate our approximation algorithm.

Linear Approximation Method.
Let ρ be a given tolerance.
Initialization. Let z0 be an initial feasible flow with costδ0 =∑e∈E fe(z

0(e)).
δ0 is an upper bound on the optimal value. DefineH 1

` ≡ 0 for ` = 1,2, . . . , n−
1,
k := 1.
Iteration k

− Step 1.Solve the following approximate subproblems in the backward scheme.

• Approximate Subproblem in Stagen: Let sn−1(v) = xn(v, vn), for all
v ∈ Cn−1, and solve

min Hk
n−1(sn−1)+

∑
e∈Et (vn)

fe(xn(e)),

s.t.
∑

e∈Et (vn)
xn(e) = q(vn), xn > 0.

Let γ kn and (xkn, s
k
n−1) be the optimal value and optimal solution of that

problem, respectively.
In general, we consider in stage` the following subproblem:
• Approximate Subproblem in Stage`: According tozk` = (xk`+1, . . . , x

k
n)

andsk` already obtained, defines`−1 as follows

s`−1(v) :=
∑

(v,u)∈E
zk`(v, u)+ x`(v, v`), v ∈ C`−1,

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 127

and solve

min Hk
`−1(s`−1)+

∑
e∈Et (v`)

fe(x`(e)),

s.t.
∑

e∈Et (v`)
x`(e) = qsk` (v`), x` > 0.

Let γ k` and (xk` , s
k
`−1) be the optimal value and optimal solution, respect-

ively.
Finally we get
• Approximate Subproblem in Stage 1:According tozk1 = (xk2, . . . , x

k
n)

andsk1 already obtained, defines0 as follows

s0(v0) =
∑

(v,u)∈E
zk1(v0, u)+ x1(v0, v1),

and solve

min Hk
0 (s0)+

∑
e∈Et (v1)

fe(x1(e)),

s.t.
∑

e∈Et (v1)

x1(e) = qsk1(v1), x1 > 0.

Let γ k1 andxk1 be the optimal value and optimal solution, respectively, and
definezk0 = (xk1, xk2, . . . , xkn).

− Step 2.Improve the linear approximations: For every` = 1,2, . . . , n − 1,
define the functionHk+1

` on the domain ofs` such that the set{(γ, s`)| γ 6
Hk+1
` (s`), s` > 0} is the convex hull of the vector(γ k` , s

k
`) and the set

{(γ, s`)| γ 6 Hk
` (s`), s` > 0}.

− Step 3.(optional). Using the best flowzk−1 of the previous iteration and the
flow zk0 = (xk1, xk2, . . . , xkn), update flowzk at this iteration by local search.

− Step 4.Defineδk =∑e∈E fe(z
k(e)) as an upper bound for the optimal value

at this iteration. If

δk − γ kn 6 ρ

thenzk is ρ-optimal, otherwise go to iterationk + 1.

The functionsHk
` , ` = 1,2, . . . , n − 1; k = 1,2, . . . are polyhedral concave on

their domains by construction. Minimizing this type of concave functions subject
to linear constraints is in general a hard problem, see Falk and Hoffman [2]. In our
case, however, we have only one constraint and the feasible region is a simplex.
Since a concave function attains its minimum in a vertex of the feasible region, we

128 RAINER E. BURKARD ET AL.

have to evaluate the functionsHk
` only in the vertices of the simplex. This can be

achieved by solving a linear program as follows.
Let s be a vector and letH be a function defined on the domain{s| s > 0}. The

hypograph ofH is given by

hypoH := {(γ, s) | γ 6 H(s), s > 0}.
Let conv(hypoH) denote the convex hull of the set hypoH .

In our case we have

hypoH 1
` = {(γ, s`) |γ 6 0, s` > 0} (16 ` 6 n− 1)

and

hypoHk+1
` = conv(hypoHk

` , (γ
k
` , s

k
`))

= conv(hypoH 1
` , (γ

1
` , s

1
`), (γ

2
` , s

2
`) . . . , (γ

k
` , s

k
`)),

for k = 1,2, In order to evaluateHk+1
` (s) we can solve the following linear

program

(α)



max
k∑
j=1

γ
j

` rj

s.t.
k∑
j=1

s
j

` rj 6 s

k∑
j=1

rj 6 1

rj > 0 for all j = 1,2, . . . , k.

If C` hasm` vertices, the corresponding linear program(α) hasm`+ 1 constraints
andk variables in the(k + 1)st iteration. The constraints of this linear program
define a simplex. At stagèthis simplex hasn` = |Et(v`)| vertices. This means,
the linear program(α) has to be solvedn` times with the same coefficient matrix
but different right hand sides. The right hand sides of two different problems at
Stagel differ in only two entries. Therefore one can take advantage of this property
by using the dual simplex method.

Another useful observation is that the linear programs at stage` in iteration
k + 1 differ from those at iterationk only by an additional column. This can also
be taken into consideration for speeding up the solution process.

Moreover, we note that the variableri of a linear program at stagèwill never
enter an optimal basis at an iterationk′ > k, if

γ i` 6 max

∑
j 6=i

γ
j

` rj

∣∣∣∣∣∣
∑
j 6=i

s
j

` rj 6 si`,
∑
j 6=i

rj 6 1, 16 j 6 k, j 6= i
 . (4)

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 129

So we can discard redundant variables, whenever this condition is fulfilled. This
results in a reduced size of the linear programs.

4. Convergence of the linear approximation method

In this section we provide a convergence proof for the method described in Section
3. In particular we prove the following theorem.

THEOREM 4.1. (i) At any iterationk of the linear approximation method,δk and
γ kn are an upper bound and a lower bound for the optimal value, respectively.

(ii) For any ρ > 0, the linear approximation method terminates after a finite
number of iterations yielding aρ-optimal solutionzk.

We prove this theorem by the help of the following lemmas.

LEMMA 4.2. The minimum cost valueH(q) on the set of feasible flows inG
with respect to the demand vectorq, is a concave function ofq on the domain
{q| q > 0}.

Proof.For any nonnegative demand vectorq, the minimum cost valueH(q) is
attained by a flow on a spanning tree inG. Let q, q ′ be two nonnegative vectors,
and letq ′′ be a convex combination ofq andq ′ : q ′′ = µq + µ′q ′ with µ + µ′ =
1, µ,µ′ > 0. Obviously,q ′′ > 0.

Let 1 be the spanning tree, for which the minimum valueH(q ′′) is attained.
Every demand vector defines a feasible flow on a spanning tree in a unique way.
Let x, x′, andx′′ be the feasible flows on1 which correspond toq, q ′ andq ′′,
respectively. Sinceq ′′ = µq + µ′q ′ we getx′′ = µx + µ′x′.

From
∑
e∈E

fe(x
′′(e)) = H(q ′′) and

∑
e∈E

fe(x(e)) > H(q),
∑
e∈E

fe(x
′(e)) > H(q ′)

we get

H(q ′′) =
∑
e∈E

fe(x
′′(e)) =

∑
e∈E

fe
(
µx(e)+ µ′x(e))

>
∑
e∈E

(
µfe(x(e))+ µ′fe(x′(e))

)
(sincefe are concave)

= µ
∑
e∈E

fe(xe)+ µ′
∑
e∈E

fe(x
′(e)) > µH(q)+ µ′H(q ′).

Thus,H(q) is concave on{q | q > 0}. 2
LEMMA 4.3. For any` = 1,2, . . . , n − 1 the functionsh` andH` are concave
on their domains.

Proof.The mappingsz` ; qz` ands` ; qs` are linear transformations from the
domains{z|z` > 0} and{s`|s` > 0} to the domain{q | q(vi) > 0, i = 1,2, · · · , l}.
By applying Lemma 4.2 to the networkG` we obtain immediately the result. 2

130 RAINER E. BURKARD ET AL.

LEMMA 4.4. For anyk = 1,2, . . . and anỳ = 0,1, . . . , n−1,H k
` 6 H` on the

domain{s`|s` > 0}.
Proof.We prove this lemma by induction ink and in`. First of all, sinceH` is

nonnegative andH 1
` equals 0 on{s`| s` > 0}, it is obvious thatH 1

` 6 H`, for all
` = 0,1, . . . , n− 1. Suppose that

Hk
` 6 H` (5)

for all ` = 0,1, . . . , n− 1. For the induction ink we are going to show that

Hk+1
` 6 H` (6)

for all ` = 0,1, . . . , n− 1. For` = 0, inequality (6) is obvious, sinceH0 ≡ H 1
0 ≡· · · ≡ Hk

0 ≡ 0 . So, we can suppose that

Hk+1
` 6 H` (7)

for some` ∈ {0,1, . . . , n− 1}. For the induction iǹ we are going to show that

Hk+1
`+1 6 H`+1. (8)

By construction,

hypoHk+1
`+1 = conv

(
hypoHk

`+1, (γ
k
`+1, s

k
`+1)

)
.

It follows from the induction hypothesis (5) that

Hk
`+1 6 H`+1.

This together with the concavity ofH`+1 (Lemma 4.3) implies (8) if we can show
that

γ k`+1 6 H`+1(s
k
`+1). (9)

By definition,γ k`+1 is the minimum value in the approximate subproblem at stage
`+ 1 in iterationk:

γ k`+1 = min

Hk
` (s`)+

∑
e∈Et (v`+1)

fe(x`+1(e))

∣∣∣∣∣∣∑
e∈Et (v`+1)

x`+1(e) = qsk`+1
(v`+1), x`+1 > 0

 .
(10)

ButH`+1
(
sk`+1

)
is by definition the minimum cost value on the set of feasible flows

in G`+1 with respect to the demand vectorqsk`+1
.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 131

It fulfills the recursion

H`+1(s
k
`+1) = min

H`(s`)+ ∑
e∈Et (v`+1)

fe(x`+1(e))

∣∣∣∣∣∣∑
e∈Et (v`+1)

x`+1(e) = qsk`+1
(v`+1), x`+1 > 0

 ,
(11)

wheres` is defined as in the approximate subproblem in stage` + 1, iterationk.
Now inequality (9) can be obtained from (10), (11) and the induction hypothesis
(5). So we obtain (8). Then, inequality (6) follows by induction on`, and the lemma
follows by induction onk. 2

Now we can prove the convergence theorem.γ kn denotes the optimal value of
the approximate subproblem at stagen, that is

γ kn = min

Hk
n−1(sn−1)+

∑
e∈Et (vn)

fe(xn(e))

∣∣∣∣∣∣
∑

e∈Et (vn)
xn(e) = q(vn), xn > 0

 .
Thus we get fromHk

n−1 6 Hn−1 (Lemma 4.4) that

γ kn 6 min

Hn−1(sn−1)+
∑

e∈Et (vn)
fe(xn(e))

∣∣∣∣∣∣
∑

e∈Et (vn)
xn(e) = q(vn), xn > 0

 .
By definition ofHn−1, however, the minimum on the right hand side of the above
inequality is the optimal value of the approximate problem in thek-th iteration. So,
γ kn is a valid lower bound for the optimal value. If the linear approximation method
terminates at iterationk, then the current best flowzk satisfies

γ kn + ρ >
∑
e∈E

fe(z
k(e)) = δk.

Sinceγ kn is a valid lower bound, the above inequality implies thatzk is aρ-optimal
flow.
It remains to prove that the linear approximation method is finite. Suppose the
contrary, namely that we get an infinite sequence{zk0}. Since the solutionxk` to
the approximate subproblem in stage` corresponds to a vertex of the simplex
defined by the constraints, the feasible flowzk0 = (xk1, xk2, . . . , xkn) corresponds to
a spanning tree. Since the number of spanning trees is finite, there exist a feasible
flow z∗ = (x∗1, x∗2, . . . , x∗n) and an infinite subsequence{zkθ0 } such that

z
kθ
0 = z∗ for all θ.

132 RAINER E. BURKARD ET AL.

This implies

s
kθ
` = s∗` for all θ and all` = 1,2, . . . , n− 1. (12)

Obviously, for` = 0 one has

H0(s
∗
0) = H

kθ
0 (s

∗
0) for all θ > 1.

Now suppose that for somè∈ {0,1, . . . , n− 1} one has

H`(s
∗
`) = H

kθ
` (s

∗
`) for all θ > `+ 1. (13)

We are going to prove that

H`+1(s
∗
`+1) = H

kθ
`+1(s

∗
`+1) for all θ > `+ 2. (14)

Indeed,

H`+1(s
∗
`+1) = H`+1(s

k`+1
`+1) (by (12))

= min

H`(s`)+ ∑
e∈Et (v`+1)

fe(x`+1(e))

∣∣∣∣∣∣
∑

e∈Et (v`+1)

x`+1(e) = qsk`+1
`+1
(v`+1), x`+1 > 0

 ,
wheres` is defined as in the approximation subproblem in stage`+1 and iteration
k`+1. So, forθ > `+ 2 one has

H`+1(s
∗
`+1) 6 H`(s

k`+1
`)+

∑
e∈Et (v`+1)

fe(x
k`+1
`+1)

= γ
k`+1
`+1

6 H
k`+1+1
`+1 (s

k`+1
`+1) (since(γ k`+1

`+1 , s
k`+1
`+1) ∈ hypoHk`+1+1

`+1)

6 H
kθ
`+1(s

k`+1
`+1) (sincekθ > k`+1+ 1)

= H
kθ
`+1(s

∗
`+1) (by (12))

6 H`+1(s
∗
`+1). (by Lemma 4.4)

Thus at iterationkn we have

H`(s
kn
`) = H

kn
` (s

kn
`) for all ` = 1,2, . . . , n− 1. (15)

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 133

Therefore,

γ knn = H
kn
n−1(s

kn
n−1)+

∑
e∈Et (vn)

fe(x
kn
n (e))

= Hn−1(s
kn
n−1)+

∑
e∈Et (vn)

fe(x
kn
n (e)) (by (15))

> min

Hn−1(sn−1)+
∑

e∈Et (vn)
fe(xn(e))

∣∣∣∣∣∣
∑

e∈Et (vn)
xn(e) = q(vn), xn > 0

 ,
wheresn−1(v) = xn(v, vn), v ∈ Cn−1. The last minimum is nothing but the optimal
value of our problem. So,γ knn is the optimal value. It can be seen from (15) that

γ knn =
∑
e∈E

fe(z
kn
0 (e)),

i.e., γ knn must coincide with the upper boundδkn . Thus the linear approximation
method terminates at iterationkn. This is a contradiction to the assumption that
sequence{zkθ0 } is infinite. This completes the proof of the convergence theorem.2
5. Computational results

As mentioned in the beginning, a dynamic programming approach for the min-
imum concave cost network flow problem seems only to be reasonable, if the
vertices in graphG have small degrees. Thus we tested the linear approximation
method mainly on several such graph classes, the largest instance being a graph
with 1103 vertices and 2202 arcs.

The only recent computational results for large scale uncapacitated minimum
concave cost network flow problems in the literature of which we are aware, are the
results given by Holmqvist, Migdalas and Pardalos [7] and Kim and Pardalos [8].
In [7] instances up to 500 vertices and 7500 arcs are solved by using a GRASP type
heuristics. The authors do not report on the quality of their suboptimal solutions.
In [8] large scale fixed charge network flow problems are treated up to 202 vertices
and and 10200 arcs. However, only problems up to 335 arcs are solved optimally.

In all tests below, the demandsq(v) are uniformly distributed random numbers
drawn from the interval[0.1,10000]. For the cost functionfe on an arce we always
assume the form:

fe(x(e)) =
{

0 if x(e) = 0

α1+ α2 · x(e)+ α3 · x(e)α4 if x(e) > 0,

134 RAINER E. BURKARD ET AL.

whereα1, α2, α3 are uniformly distributed random numbers in[0,100] andα4 is
a uniformly distributed random number in[0,1]. The approximation method is
implemented in ANSI C and the codes are compiled using thecc compiler. The
linear programs are solved by using the callable library from CPLEX 6.0.2. All
tests are run on a HP J200 PARISK 7200 workstation with 1.5 GB of RAM.

For every vertexvl we create a basic data set for thenl linear programs cor-
responding to the arcs with the terminal vertexvl. In an iteration we justify the
right-hand side in the data set to obtain a linear program to be solved.

In order to solve the linear programs we have always used the CPLEX primal
simplex algorithm. By performing experimental tests we have seen that applying
the CPLEX primal algorithm is better than applying the CPLEX dual algorithm to
the modified problems. This can be explained by the fact that CPLEX is performing
internally a lot of preprocessing and reduction steps which considerably reduce the
problem size and lead to fast reoptimization.

In all our computational experiments we useρ = 10−6 as a stopping criterion.
That is we virtually ask for the true optimal solution. Moreover, we do not use any
local search in Step 3 of the algorithm for improving the upper bound. Since the gap
between lower and upper bounds of the optimal flow value is quite large during the
starting iterations, and we virtually ask for the optimal solution, local search could
be time consuming to use. From computational experiments we see that usually the
upper bound reaches the optimal value before the lower bound. This happens just
very few iterations before we stop the algorithm. Hence, in this case a better upper
bound during the iterations obtained by local search is not helpful. But we think
local search may be helpful when an approximate solution is asked for. In this case
one may start using local search after a given number of iterations (i.e., when the
obtained solution is near enough to the optimal solution).

The number of linear programs solved in each iteration is equal to the number of
arcs in graphG. The total number of linear programs solved in our computational
experiments includes the linear programs solved in order to discard redundant
variables by using condition (4).

Since all test runs took a relatively large number of iterations (usually more
than 1000), we discard redundant variables by using condition (4) after every 500
iterations. Although we have to solve additional linear programs in order to test
condition (4), this pays off in terms of computational time and memory used. We
have seen from experimental tests that good results can be obtained by performing
the test of condition (4) every 500 iterations.

The first graph class we consider is specially layered graphs of the following
form. The graphs havep layers and in every layerr vertices. The source is con-
nected with all vertices in the first layer. Forr = 2 we connect always all vertices
of two adjacent layers, in the casesr > 3 we generate the arcs randomly. Figure
1 shows the structure of such a layered graph and Table 1 reports computational
results for this graph class.

In the table below are given the computational results for the layered graphs.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 135

Figure 1. A layered graph (r = 2,p = 4).

Table 1. Results for the layered graphs

No. of vertices No. of No. of Average No. No. of Average No. Average

per layer vertices destinations of arcs tests of iterations CPU (s)

2 23 22 42.0 5 75.0 2.58

2 53 52 102.0 5 181.4 21.70

2 103 102 202.0 5 357.2 117.31

2 203 202 402.0 5 728.4 807.60

2 303 302 602.0 2 1062.5 3276.73

2 403 402 802.0 2 1417.0 4581.85

2 503 502 1002.0 1 1795.0 9503.58

2 603 602 1202.0 1 2137.0 13460.33

2 803 802 1602.0 1 2849.0 27935.86

2 1003 1002 2002.0 1 3643.0 58424.93

2 1103 1102 2202.0 1 3923.0 67854.50

3 34 33 77.2 5 378.4 62.74

3 64 63 157.2 5 791.8 452.15

3 154 153 379.0 2 2016.0 3989.01

3 304 303 743.0 1 4063.0 20910.34

4 45 44 123.0 2 1919.0 1588.78

4 105 104 300.0 1 5511.0 15193.96

We perform a number of tests for a given structure of the graph for a given
number of vertices. The average number of arcs, average number of iterations and
the average CPU times (in seconds) are given in the table. Recall that for graphs
with 2 vertices per layer the number of arcs is the same for each test of a given
instance, while for graphs with more than two vertices per layer the number of
arcs may be different in each of the tests. The CPU time for each problem in the
table represents the computational time to solve the problem, without taking into
consideration the generation of data.

Second, we test the algorithm on acyclic graphs as shown in Figure 2. We
generate these graphs due to the condition that the head of an arc is at most 3
layers away from the layer which contains the tail of this arc and that the indegree

136 RAINER E. BURKARD ET AL.

Figure 2. An acyclic graph of the second test-class.

Table 2. Results for the acyclic graphs

No. of vertices No. of No. of Average No. No. of Average No. Average

per layer vertices destinations of arcs tests of iterations CPU (s)

2 23 22 50.4 5 143.0 9.20

2 33 32 76.4 5 351.2 55.70

2 53 52 124.4 5 447.6 123.00

2 103 102 248.2 5 1124.6 1224.79

2 203 202 492.5 2 2319.5 5677.41

2 303 302 748.0 1 3177.0 15553.04

3 16 15 36.2 5 315.4 27.10

3 34 33 90.5 2 1649.0 1107.08

3 64 63 175.0 1 4250.0 7331.95

of the vertices is not too high. Table 2 shows computational results for this class of
graphs.

As a third graph class we consider transportation networks with one source,m

transshipment vertices andr sinks. The source is connected with every transship-
ment vertex and these are connected with all sinks (cf. Figure 3). Thus these graphs
havem(r + 1) arcs in total. Table 3 shows the computational results for this graph
class.

Figure 3. A transportation network with 2 transshipment vertices and 3 sinks.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 137

Table 3. Results for the transportation graphs

No. of No. of transship. No. of No. of No. of Average No. Average

vertices vertices destinations arcs tests of iterations CPU (s)

53 2 52 102 5 441.6 81.63

103 2 102 202 5 1111.8 903.62

203 2 202 402 1 3281.0 7796.14

34 3 33 93 5 713.0 206.99

54 3 53 153 5 1717.0 1085.41

104 3 103 303 1 7182.0 19668.83

15 4 14 44 5 256.0 16.52

25 4 24 84 5 957.0 294.75

55 4 54 204 1 6460.0 13922.85

16 5 15 55 5 563.6 110.58

21 5 20 80 5 1205.0 431.60

26 5 25 105 2 2042.5 1167.84

If we compare the results for graphs with different structures but with approx-
imately the same number of vertices and arcs it can be seen that the algorithm per-
forms better for the layered network. For example, if the first 3 instances of trans-
portation graphs in the above table are compared with the corresponding layered
graphs with 2 vertices per layer (see Table 1), it can be seen that the number of
iterations and the CPU times are smaller in the case of a layered network. From the
tables it is clear that the results are better for graphs with small degree vertices and
small cardinality|Cl|.

Finally, we consider complete, acyclic graphs with up to 21 vertices, (see Figure
4). The corresponding computational results can be found in Table 4.

Figure 4. A complete graph.

It can be observed that the above method is not practical for complete graphs.
For graphs with 19 or more vertices the number of iterations and computation time
is exorbitant.

138 RAINER E. BURKARD ET AL.

Table 4. Results for complete graphs

No. of No. of No. of No. of Average No. Average

Vertices Destinations Arcs Tests of Iterations CPU (s)

11 10 55 5 187.6 13.20

13 12 78 5 427.6 85.03

16 15 120 5 1132.6 725.35

19 18 171 1 5149.0 17491.17

20 19 190 1 6393.0 26220.21

21 20 210 1 7822.0 47994.34

6. Conclusions

The computational results show that dynamic programming might successfully be
applied to minimum concave cost network flow problems for layered networks
whose vertices have a small indegree. The proposed successive linear underes-
timation method for the involved concave cost functions has the nice feature that
several times linear programs with the same coefficient matrix have to be solved.
Two linear programs in two successive iterations differ only in one column of the
coefficient matrix and in the right hand side. Thus one can take advantage of these
properties by applying appropriate techniques from linear programming.

The advantage of this method is that the quality of the solution can be con-
trolled. We have virtually found the true optimal solution in all our computational
experiments.

Instead of linear underestimations of the involved functions it might be worth-
while to consider piecewise linear approximations for the convex cost functions
like in the paper of Kim and Pardalos [8]. Such an approach is left to a future
study.

Acknowledgements

We thank Bettina Klinz and Eranda Çela for many useful discussions on this topic.
Moreover, we thank two anonymous referees for their careful attention.

References

1. Erickson, R.E., Monma, C.L. and Veinott Jr., A.F. (1987), Send-and-split method for minimum-
concave-cost network flows,Mathematics of Operations Research12: 634–664.

2. Falk, J.E. and Hoffman, K.L. (1976), A successive underestimation method for concave
minimization problems,Mathematics of Operations Research1: 251–259.

3. Ford Jr., L.R. and Fulkerson, D.R. (1962),Flows in Networks, Princeton University Press,
Princeton, New Jersey.

LINEAR APPROXIMATIONS IN A DYNAMIC PROGRAMMING APPROACH 139

4. Gallo, G., Sandi, C. and Sodini, C. (1980), An algorithm for the min concave cost flow problem,
European Journal of Operational Research4: 248–259.

5. Guisewite, G.M. and Pardalos, P.M. (1990), Minimum concave-cost network flow problems:
applications, complexity, and algorithms,Annals of Operations Research25: 75–100.

6. Guisewite, G.M. and Pardalos, P.M. (1991), Algorithms for the single-source uncapacitated
minimum concave-cost network flow problem.Journal of Global Optimization1: 245–265.

7. Holmqvist, K., Migdalas, A. and Pardalos, P.M. (1998), A GRASP algorithm for the single
source uncapacitated minimum concave-cost network flow problem,DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 40: 131–142.

8. Kim, D. and Pardalos, P.M. (1999), A solution approach to the fixed charge network flow
problem using a dynamic slope scaling procedure,Operations Research Letters24: 195–203.

9. Kim, D. and Pardalos, P.M. (2000), Dynamic slope scaling and trust interval techniques for
solving concave piecewise linear network flow problems,Networks35: 216–222.

10. Klinz, B. and Tuy, H. (1993), Minimum concave-cost network flow problems with a single
nonlinear arc cost, in: P. Pardalos and D. Du (eds.),Network Optimization Problems, World
Scientific, pp. 125–143.

11. Tuy, H. (2000), The minimum concave-cost network flow problem with a fixed number of
nonlinear arc costs: complexity and approximation, in: P.M. Pardalos (ed.),Approximation and
Complexity in Numerical Optimization: Continuous and Discrete Problems, Kluwer Academic
Publishers, pp. 383–402.

12. Tuy, H., Ghannadan, S., Migdalas, A. and Värbrand, P. (1996), A strongly polynomial al-
gorithm for a concave production-transportation problem with a fixed number of nonlinear
variables,Mathematical Programming72: 229–258.

13. Wagner, H.M. (1975),Principles of Operations Research, 2nd edition, Prentice–Hall, Inc.,
Englewood Cliffs, New Jersey.

14. Zangwill, W.I. (1968), Minimum concave cost flows in certain networks,Management Science
14: 429–450.

